
Dr. Michael Tiller

Xogeny

Component

Sub-subsystem

Subsystem

System

3D
Geometry

Distributed Systems

Simulink

Modelica

FEM/CFD

Lumped Systems

C
o

-s
im

u
la

ti
o

n
: F

M
I

FMU

FMU

Boundary Conditions Maps

HiL

» Modelica is a modeling language that is:
˃ Vendor-neutral

˃ Multi-domain

˃ Object-oriented

˃ Multi-formalism

» Modelica is like LEGOs for building
mathematical system models

=

𝑉𝑠

𝑖 →

𝑉𝑐

Differentiation block

Only 1 state (vs. 2 previously)

No feedback loop

Completely different model!

O
n

ly
 c

h
an

ge

Block Diagrams Acausal Modeling

» Textbook equations
have to be constantly
reformulated
depending on context.

» Different “blocks” with
different combinations
of inputs and outputs.

» Tedious, time-
consuming and error
prone.

» Long-division

» Textbook equations are
captured in reusable
object-oriented
component models.

» A single component for
all causalities (e.g.
planetary gear).

» Fun, fast and
automated (and
efficient!)

» Calculator

» Natural way to describe physical behavior
˃ Multi-body systems (joint constraints)

˃ Fluid problems (ideal gas law)

˃ Easy to express many important idealizations (stiff springs)

» Difficult to solve in a purely numerical way
˃ Consistent initial conditions

˃ High index DAEs

» Preferred solution methods:
˃ Index reduction (Pantelides’ algorithm)

˃ Dummy derivative method

˃ Turn DAE into ODEs (or index-1 DAEs)

» Attraction of modeling is the landscape of
infinite possibilities it creates.

» What were computers invented for?

» Simulation is as old as computing itself.

ENIAC (circa 1947-1955)

“The Giant Brain”

Artillery Firing Tables

» Originally, solution schemes (integration) was
integrated with problem:

» Eventually, problem and solver were cleanly
partitioned:

» Performance:
˃ (Cost of evaluation f)  (# of times f is evaluated)

𝑥 𝑡 = 𝑓 𝑥, 𝑢, 𝑡 ; 𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑡𝑛 +
ℎ

2
, 𝑥𝑛 +

ℎ𝑓 𝑡𝑛, 𝑦𝑛
2

)

V = V + A*dt;

X = X + V*dt;

» The Six Blind Men and The Elephant

Query the underlying structure I give you a number, you give me a number. I give you MORE numbers, you give me MORE numbers.

Don’t think of f as a black-box numerical function,
think of it as a representation of your system
that conveys a complete representation of
your problem and then optimize it.

» Umbrella topic for:
˃ Equation sorting

˃ Index reduction

˃ State selection

˃ Substitutions

˃ Tearing

» Goal is not a symbolic/analytical solution

» Reduces the DAEs down to ODEs
˃ More natural way to express behavior

˃ Reuse established numerical solvers

˃ Heavily optimize evaluation costs

» Opinion: it will be impossible for purely numerical
tools to compete.

Requires structural information

0..

)]..()..([*...

0....

.....*)..(

0....

.....*..

0....

)(..

0....



















vnground

vncapacitordervpcapacitorderCcapacitoripcapacitor

incapacitoripcapacitor

vnindustorvpinductorLinductoripinductorder

ininductoripinductor

vnresistorvpresistorRresistoripresistor

inresistoripresistor

tfipstep

instepipstep

0........

....

....

....

0..........

....

....

....

....



















ipcapacitoripinductoripresistoripstep

vpcapacitorvpinductor

vpinductorvpresistor

vpresistorvpstep

ingroundincapacitorininductorinresistorinstep

vngroundvncapacitor

vncapacitorvninductor

vninductorvnresistor

vnresistorvnstep

Through variables
(summed)

Across variables
(equated)

0........

....

....

....

0..........

....

....

....

....



















ipcapacitoripinductoripresistoripstep

vpcapacitorvpinductor

vpinductorvpresistor

vpresistorvpstep

ingroundincapacitorininductorinresistorinstep

vngroundvncapacitor

vncapacitorvninductor

vninductorvnresistor

vnresistorvnstep

0..

)..()..(.*..

0....

.....*)..(

0....

.....*..

0....

)(..

0....



















vnground

vncapacitordervpcapacitorderCcapacitoripcapacitor

incapacitoripcapacitor

vnindustorvpinductorLinductoripinductorder

ininductoripinductor

vnresistorvpresistorRresistoripresistor

inresistoripresistor

tfipstep

instepipstep





















































































1

1111

1/1

11

11

1

11

11

1

11

111

1

11

11

11

11

11

11

C

L

R

Structure of Equations



























































































































































incapacitorininductorinresistorinstep

Ccapacitoripcapacitor

ipcapacitor

ipinductoripresistoripstep

ipresistor

Rresistorvnresistorvpresistor

ipinductor

Linductorvninductoripinductor

vpresistor

vpinductor

vpcapacitor

ipstep

tf

vnresistor

vninductor

vncapacitor

vnground

inground

vpcapacitorder

incapacitor

ipcapacitor

inresistor

ipresistor

ininductor

ipinductorder

vpstep

vpresistor

vpinductor

instep

ipstep

vnstep

vnresistor

vninductor

vncapacitor

vnground

........

./..

..

......

..

./)....(

..

./)....(

..

..

..

..

)(

..

..

..

..

0

:

..

)..(

..

..

..

..

..

)..(

..

..

..

..

..

..

..

..

..

..















































































11111

1

11

111

11

1

11

1

11

11

11

1

11

1

11

11

11

1

1

11

1

C

RR

L

» Functional Mockup Interface (FMI)

» Initiated by Daimler as an industry wide and vendor
neutral alternative to (MathWorks) S-functions.

» Initially funded by EU. Eventually became an
official Modelica Association project.

» A way to exchange compiled models
˃ Not really a modeling technology

˃ Limited “composability”

» FMI 2.0-RC1 just released
˃ Support for discrete states

˃ Algebraic loops during events and initialization

» Functional Mockup Unit – FMU

» Pre-compiled collection of files:
˃ Binaries (for various platforms)

˃ Source code (in provided)

˃ Resources (data files, etc)

˃ Documentation

˃ Model Description (XML file)

» FMUs are instantiated
˃ Potentially multiple instances in same simulation

˃ Can be formulated for “Model Exchange” or “Co-simulation”

» Reaching limitations of classic Von Neumann
architecture (CPU+memory).

» Multi-core machines and cloud computer
resources are becoming increasingly common.

» Simulation is typically heavily sequential

» Exploiting future computing resources:
˃ Thinking more about parallel computations

˃ Loosely coupled analyses

˃ Cheaper computing and timing driving analyses like optimization,
monte-carlo and other parallelizable types of analysis

˃ Model reduction could become more cost effective

» Xogeny proprietary platform

» Platform for running FMI compliant models “in
the cloud”

» Inspiration came from dynamic programming
application where desktop resources weren’t
sufficient.

» Easy path to model reduction, Monte-Carlo
analysis, etc.

» Wraps analyses in data management
framework for persisting input and output data.

» Attraction of modeling is the landscape of
infinite possibilities it creates.

» Attraction of modeling is the landscape of
infinite possibilities it creates.

» “…characterized by anxiety in situations where
the sufferer perceives certain environments as
dangerous or uncomfortable, often due to the
environment’s vast openness…”

» It is worth the
effort to organize
features and
capabilities around
achieving a great
user experience.

» Important to understand the business questions
that need answering.
˃ Do you need one application or many?

» Models are the “functions” to capture non-trivial
relationships.
˃ Can be recombined in different ways depending on the use case.

» Applications need to provide a clear path from
models to questions/solutions.

» Software architectures often tend toward
monolithic applications.

» Xogeny applications heavily leverage declarative
representations and code generation.
˃ Don’t write applications, write programs that write applications.

» Increasing pressure to connect CAD, CAE,
requirements and system simulation.

» Lots of compelling technologies out there that
are not being leveraged.
˃ Competitive advantage in breaking away from legacy and capitalizing

on these opportunities.

» Highlight the value of modeling by making it
accessible to everybody.

» Exciting time for system simulation…

